Lava fountain jet noise during the 2018 eruption of fissure 8 of Kīlauea volcano

Author:

Gestrich Julia E.,Fee David,Matoza Robin S.,Lyons John J.,Dietterich Hannah R.,Cigala Valeria,Kueppers Ulrich,Patrick Matthew R.,Parcheta Carolyn E.

Abstract

Real-time monitoring is crucial to assess hazards and mitigate risks of sustained volcanic eruptions that last hours to months or more. Sustained eruptions have been shown to produce a low frequency (infrasonic) form of jet noise. We analyze the lava fountaining at fissure 8 during the 2018 Lower East Rift Zone eruption of Kīlauea volcano, Hawaii, and connect changes in fountain properties with recorded infrasound signals from an array about 500 m from the fountain using jet noise scaling laws and visual imagery. Video footage from the eruption reveals a change in lava fountain dynamics from a tall, distinct fountain at the beginning of June to a low fountain with a turbulent, out-pouring lava pond surrounded by a tephra cone by mid-June. During mid-June, the sound pressure level reaches a maximum, and peak frequency drops. We develop a model that uses jet noise scaling relationships to estimate changes in volcanic jet diameter and jet velocity from infrasound sound pressure levels and peak frequencies. The results of this model indicate a decrease in velocity in mid-June which coincides with the decrease in fountain height. Furthermore, the model results suggest an increase in jet diameter, which can be explained by the larger width of the fountain that resembles a turbulent lava pond compared to the distinct fountain at the beginning of June. The agreement between the infrasound-derived and visually observed changes in fountain dynamics suggests that jet noise scaling relationships can be used to monitor lava fountain dynamics using infrasound recordings.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3