The influence of volcano topographic changes on infrasound amplitude: lava fountains at Mt. Etna in 2021

Author:

Iozzia AdrianaORCID,Watson Leighton M.ORCID,Cantarero MassimoORCID,De Beni EmanuelaORCID,Di Grazia GiuseppeORCID,Ganci GaetanaORCID,Johnson Jeffrey B.,Privitera EugenioORCID,Proietti CristinaORCID,Sciotto MariangelaORCID,Cannata AndreaORCID

Abstract

AbstractInfrasound signals are used to investigate and monitor active volcanoes during eruptive and degassing activity. Infrasound amplitude information has been used to estimate eruptive parameters such as plume height, magma discharge rate, and lava fountain height. Active volcanoes are characterized by pronounced topography and, during eruptive activity, the topography can change rapidly, affecting the observed infrasound amplitudes. While the interaction of infrasonic signals with topography has been widely investigated over the past decade, there has been limited work on the impact of changing topography on the infrasonic amplitudes. In this work, the infrasonic signals accompanying 57 lava fountain paroxysms at Mt. Etna (Italy) during 2021 were analyzed. In particular, the temporal and spatial variations of the infrasound amplitudes were investigated. During 2021, significant changes in the topography around the most active crater (the South East Crater) took place and were reconstructed in detail using high resolution imagery from unoccupied aerial system surveys. Through analysis of the observed infrasound signals and numerical simulations of the acoustic wavefield, we demonstrate that the observed spatial and temporal variation in the infrasound signal amplitudes can largely be explained by the combined effects of changes in the location of the acoustic source and changes in the near-vent topography, together with source acoustic amplitude variations. This work demonstrates the importance of accurate source locations and high-resolution topographic information, particularly in the near-vent region where the topography is most likely to change rapidly and illustrates that changing topography should be considered when interpreting local infrasound observations over long time scales.

Funder

Istituto Nazionale di Geofisica e Vulcanologia

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3