Extreme events in biological, societal, and earth sciences: A systematic review of the literature

Author:

Stewart Mathew,Carleton W. Christopher,Groucutt Huw S.

Abstract

The term “extreme event” is commonly used to describe high-impact, unanticipated natural events, like floods, tsunamis, earthquakes, and volcanic eruptions. It first appeared in the scientific literature in the 1950s and has since spread to disciplines as diverse as economics, psychology, medicine, and engineering. The term is increasingly being applied to the study of historical, prehistorical, and deep-time events across a broad range of scales, and it is widely acknowledged that such events have had profound impacts on the Earth’s biodiversity and cultures. Understandably, then, how people think about, define, and study extreme events varies considerably. With extreme events expected to become more frequent, longer lasting, and more intense in the coming decades as a result of global warming, the differing extreme event definitions—both across and within disciplines—is likely to lead to confusion among researchers and pose significant challenges for predicting and preparing for extreme events and their impacts on natural and social systems. With this in mind, we conducted a systematic quantitative review of 200 randomly selected, peer-reviewed “extreme event” research papers (sourced from Web of Science, accessed January 2020) from the biological, societal, and earth sciences literature with the aim of quantifying several pertinent features of the research sample. On the one hand, our analysis found a great deal of variability among extreme event papers with respect to research interests, themes, concepts, and definitions. On the other hand, we found a number of key similarities in how researchers think about and study extreme events. One similarity we encountered was that researchers tend to view extreme events within a particular temporal context and quite often in terms of rates of change. Another similarity we encountered was that researchers often think of and study extreme events in terms of risks, vulnerabilities, and impacts. The similarities identified here may be useful in developing a common and comprehensive definition of what constitutes an extreme event, and should allow for more comparative research into extreme events at all spatio-temporal scales which, we predict, will provide important new insights into the nature of extreme events.

Funder

Max-Planck-Gesellschaft

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extreme and Dragon-King Events in a Discrete Neuron Model;International Journal of Bifurcation and Chaos;2024-08-15

2. The intervals between zero-crossings of non-Gaussian stable random processes;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-08

3. Predictability of decay events in transitional wall-bounded flows;Journal of Physics: Conference Series;2024-04-01

4. Towards an antifragility framework in past human–environment dynamics;Humanities and Social Sciences Communications;2023-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3