Hydrogeochemistry and Acidic Property of Submarine Groundwater Discharge Around Two Coral Islands in the Northern South China Sea

Author:

Lui Hon-Kit,Liu Min-Yun,Lin Hsiu-Chin,Tseng Hsiao-Chun,Liu Li-Lian,Wang Feng-Yu,Hou Wei-Ping,Chang Rae,Chen Chen-Tung Arthur

Abstract

Submarine groundwater discharge (SGD) is an important source of nutrients in many coastal regions, yet little information is available on its carbonate chemistry and controlling factors. This study examined the processes and factors controlling the hydrogeochemistry and acidic property of the groundwaters and SGD waters of two isolated coral islands, Liuqiu Island (13 km off southwestern Taiwan) and Dongsha Island (located in the northern South China Sea, 420 km away from Liuqiu Island). Our results showed that the total alkalinity and dissolved inorganic carbon (DIC) of the fresh SGD waters were controlled mainly by the chemical weathering of carbonate minerals. Part of the DIC came from the organic matter decomposition or soil CO2, reducing the pH and CO32− concentration. Distributions of the carbonate chemistry and nutrients of the SGD waters were controlled mainly by physical mixing between the groundwater and the ambient seawater under the seabed, the so-called subterranean estuary. The Ca2+ released through weathering significantly increased the saturation state of aragonite or calcite, reducing the corrosiveness of the SGD waters on the carbonate rocks. This study is likely the first to examine the effects of the acidic property of SGD waters on the biogenic carbonate spine of a sea urchin and a pteropod shell. The spring water with similar carbonate chemistry to that of the freshwater SGD endmember from Liuqiu Island with a saturation state of aragonite of 0.96 caused observable dissolution on the spine of a sea urchin and a pteropod shell, but the spine dissolved more readily. This was because the spine is made of high-Mg calcite, which has higher solubility than that of aragonite or calcite. Such a result implies that some marine organisms with carbonate skeletons or shells containing high Mg:Ca ratios may suffer the impact of ocean acidification earlier. Although the SGD may contribute less than 10% of freshwater discharge by rivers to the coastal area, its impact on coastal biogeochemical cycles and ecosystems due to its acidic property and continual effect on the coast all year round deserves further investigation.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3