Small Muddy Paleochannels and Implications for Submarine Groundwater Discharge near Charleston, South Carolina, USA

Author:

White Scott M.1ORCID,Smoak Erin1,Leier Andrew L.1,Wilson Alicia M.1ORCID

Affiliation:

1. School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, SC 29208, USA

Abstract

The spatial variations in Quaternary sediments on the inner continental shelf are produced by the progression of depositional environments during the latest sea-level rise, and this sedimentary architecture plays a fundamental role in controlling groundwater discharge. However, coincident seismic mapping, sediment cores, and hydrological studies are rare. Here, we combine high-resolution, 0.5–10 kHz, high-frequency seismic profiles with sediment cores to examine the nature of the sediment deposits, including paleochannels, where submarine groundwater discharge has also been studied in a 150 km2 area of the inner shelf north of Charleston, South Carolina. We used high-frequency seismic reflection to interpret seismic facies boundaries, including 16 paleochannel crossings, to 20 km offshore. From 13 vibracores taken at the intersections of the seismic lines, we defined seven lithofacies representative of specific depositional environments. The paleochannels that we cored contain thick layers of structureless mud sometimes interbedded with silt, and mud is common in several of the nearshore cores. Our results indicate that paleochannels are often mud-lined or filled in this area and were most likely former estuarine channels. Neither the paleochannels nor a mud layer were found farther than 11 km off the present shoreline. This offshore distance coincides with the strongest pulses of groundwater discharge, emerging just beyond the paleochannels. This suggests that the muddy paleochannel system acts as a confining layer for submarine groundwater flow.

Funder

U.S. National Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3