Prediction of the Height of Fractured Water-Conducting Zone Based on the Improved Cuckoo Search Algorithm–Extreme Learning Machine Model

Author:

Zhu Zhijie,Guan Songsong

Abstract

The research aims to improve prediction accuracy for heights of fractured water-conducting zones (FWCZs) and effectively prevent and control roof water disasters, to ensure safe coal mining. For this purpose, the method that integrates the improved cuckoo search (ICS) algorithm and extreme learning machine (ELM) is used to predict heights of FWCZs. Based on an analysis of factors influencing FWCZs, the ICS algorithm is employed to optimize two key parameters of the ELM model, the input weight ѡ and the bias b of hidden elements, thus establishing the ICS–ELM model for predicting the height of the FWCZ. The ICS–ELM model is trained using 42 measured samples, and the trained model is employed to predict the remaining six sample data points. The obtained prediction results show a relative error of only 3.97% and are more consistent with the actual situation. To verify the effectiveness of the model, the prediction results are compared with those of the adaptive particle swarm optimization based least squares support vector machine (APSO–LSSVM) and particle swarm optimization (PSO) based backpropagation (PSO–BP) models. The average relative errors of the two models are 8.21 and 9.75%, respectively, which further proves that the ICS–ELM model improves the accuracy of prediction results for heights of FWCZs. The heights of FWCZs predicted using the model are accurate and reliable, and the accuracy meets the requirements of engineering practice.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3