Study on Overburden Structure Characteristics and Induced Scour Mechanisms of Horizontal Sublevel Mining in Steep and Extra-Thick Coal Seams

Author:

Ge ShiguoORCID,Yuan Chongliang,Chang Qingliang,Wang Yongzhong,Zhang BiaoORCID

Abstract

In order to study the space–time evolution law and the induced impact mechanism of overburden breaking in the tangential horizontal sublevel during the fully mechanized mining of extra-thick and steep coal seams, we took the Yaojie No. 3 mine as an example. Through the establishment of an overburden breaking mechanical model, the structural characteristics of hinged rock beams after overburden breaking and the space–time evolution law of overburden structure instability were analyzed, the static and dynamic load conditions that induce rockbursts were analyzed, and the induced impact mechanism of dynamic and static load superposition was revealed. Our research showed that, due to the asymmetry of the roof and floor, the coal body in the working face is in the strong shear stress zone at the end of the air inlet roadway, which easily produces shear failure. The lateral support pressure and the shear stress of the coal body in the goaf are the static load sources of the rockburst in the steep coal seam; after the roof overburden is broken, a hinge-bearing structure is formed under the support of the sliding force of the fault block and the floating gangue in the goaf. When the coal is mined in the lower section, the strong dynamic load formed by the impact of the fault block on the topmost coal is the main dynamic load source of the impact on the working face. Under the superpositions of the dynamic load and static load, the coal and rock lose stability and release energy in a large range, generating dynamic and static superimposed rockbursts. Furthermore, the internal mechanism of the occurrence of rockbursts during the mining of steep and extra-thick coal seams in the Yaojie No. 3 coal mine was revealed. The static load of the coal body comes from the clamping actions of the roof and floor, and the dynamic impact load comes from the clamping structure’s instability. The reason for the occurrence of rockbursts in the mining of steep and extra-thick coal seams in the Yaojie No. 3 coal mine was reasonably explained.

Funder

General Project of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference35 articles.

1. Repetitive mining subsidence with thick soil layers and steep seam;Gao;J. China Coal Soc.,2007

2. Mechanism, prediction and control of “rock burst by shock “dynamic disaster in compound thick coal seam;Jiang;J. China Coal Soc.,2009

3. Study on rock mechanics in deep mining engineering;He;Chin. J. Rock Mech. Eng.,2005

4. State of the art review on mechanism and prevention of coal bumps in China;Jiang;J. China Coal Soc.,2014

5. The mechanism of strata and surface movements induced by extra–thick steeply inclined coal seam applied horizontal slice mining;Dai;J. China Coal Soc.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3