Debris Flow Modelling Using RAMMS Model in the Alpine Environment With Focus on the Model Parameters and Main Characteristics

Author:

Mikoš Matjaž,Bezak Nejc

Abstract

Debris flows are among the natural hazards that can occur in mountainous areas and endanger people’s lives and cause large economic damage. Debris flow modelling is needed in multiple applications such as design of protection measures or preparation of debris flow risk maps. Many models are available that can be used for debris flow modelling. The Rapid Mass Movement Simulation (RAMMS) model with its debris flow module, (i.e. RAMMS-DF) is one of the most commonly used ones. This review provides a comprehensive overview of past debris flow modelling applications in an alpine environment with their main characteristics, including study location, debris flow magnitude, simulation resolution, and Voellmy-fluid friction model parameter ranges, (i.e. μ and ξ). A short overview of each study is provided. Based on the review conducted, it is clear that RAMMS parameter ranges are relatively wide. Furthermore, model calibration using debris-flow post-event survey field data is the essential step that should be done before applying the model. However, an overview of the parameters can help to limit the parameter ranges. Particularly when considering the similarity between relevant case studies conducted in similar environments. This is especially relevant should the model be applied for estimating debris-flow hazard for potential future events. This model has been used mostly in Europe, (i.e. Alpine region) for modelling small and extremely large debris flows.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3