Estimating Post‐Fire Flood Infrastructure Clogging and Overtopping Hazards

Author:

Jong‐Levinger Ariane12ORCID,Houston Douglas3,Sanders Brett F.13ORCID

Affiliation:

1. Department of Civil and Environmental Engineering University of California, Irvine Irvine CA USA

2. Schmid College of Science and Technology Chapman University Orange CA USA

3. Department of Urban Planning and Public Policy University of California, Irvine Irvine CA USA

Abstract

AbstractCycles of wildfire and rainfall produce sediment‐laden floods that pose a hazard to development and may clog or overtop protective infrastructure, including debris basins and flood channels. The compound, post‐fire flood hazards associated with infrastructure overtopping and clogging are challenging to estimate due to the need to account for interactions between sequences of wildfire and storm events and their impact on flood control infrastructure over time. Here we present data sources and calibration methods to estimate infrastructure clogging and channel overtopping hazards on a catchment‐by‐catchment basis using the Post‐Fire Flood Hazard Model (PF2HazMo), a stochastic modeling approach that utilizes continuous simulation to resolve the effects of antecedent conditions and system memory. Publicly available data sources provide parameter ranges needed for stochastic modeling, and several performance measures are considered for model calibration. With application to three catchments in southern California, we show that PF2HazMo predicts the median of the simulated distribution of peak bulked flows within the 95% confidence interval of observed flows, with an order of magnitude range in bulked flow estimates depending on the performance measure used for calibration. Using infrastructure overtopping data from a post‐fire wet season, we show that PF2HazMo accurately predicts the number of flood channel exceedances. Model applications to individual watersheds reveal where infrastructure is undersized to contain present‐day and future overtopping hazards based on current design standards. Model limitations and sources of uncertainty are also discussed.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Reference115 articles.

1. BAER. (2021).Burned area reflectance classification (BARC) products[Dataset].Burned Area Emergency Response Teams. Retrieved fromhttps://burnseverity.cr.usgs.gov/baer/baer‐imagery‐support‐data‐download

2. Combined Modeling of US Fluvial, Pluvial, and Coastal Flood Hazard Under Current and Future Climates

3. Present and future Köppen-Geiger climate classification maps at 1-km resolution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3