Snow Depth Retrieval on Arctic Sea Ice Using Under-Ice Hyperspectral Radiation Measurements

Author:

Anhaus Philipp,Katlein Christian,Nicolaus Marcel,Arndt Stefanie,Jutila Arttu,Haas Christian

Abstract

Radiation transmitted through sea ice and snow has an important impact on the energy partitioning at the atmosphere-ice-ocean interface. Snow depth and ice thickness are crucial in determining its temporal and spatial variations. Under-ice surveys using autonomous robotic vehicles to measure transmitted radiation often lack coincident snow depth and ice thickness measurements so that direct relationships cannot be investigated. Snow and ice imprint distinct features on the spectral shape of transmitted radiation. Here, we use those features to retrieve snow depth. Transmitted radiance was measured underneath landfast level first-year ice using a remotely operated vehicle in the Lincoln Sea in spring 2018. Colocated measurements of snow depth and ice thickness were acquired. Constant ice thickness, clear water conditions, and low in-ice biomass allowed us to separate the spectral features of snow. We successfully retrieved snow depth using two inverse methods based on under-ice optical spectra with 1) normalized difference indices and 2) an idealized two-layer radiative transfer model including spectral snow and sea ice extinction coefficients. The retrieved extinction coefficients were in agreement with previous studies. We then applied the methods to continuous time series of transmittance and snow depth from the landfast first-year ice and from drifting, melt-pond covered multiyear ice in the Central Arctic in autumn 2018. Both methods allow snow depth retrieval accuracies of approximately 5 cm. Our results show that atmospheric variations and absolute light levels have an influence on the snow depth retrieval.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3