The interactive feedback mechanisms between terrestrial water storage and vegetation in the Tibetan Plateau

Author:

Deng Haijun,Chen Yaning,Chen Xingwei,Li Yang,Ren Zhiguo,Zhang Zhiwei,Zheng Zhouyao,Hong Sheng

Abstract

A component of terrestrial water storage, vegetation is also an influential driver of changes in terrestrial water storage. In the context of warming on the Tibetan Plateau, it is essential to explore the relationship between changes in terrestrial water storage and vegetation in this region to understand further the role of vegetation in the changes of water systems in alpine mountains. Our study combines terrestrial water storage anomalies data and vegetation indices to determine how their interact. The results indicate a warming rate of 0.44°C/decade (p<0.01) over the Tibetan Plateau from 1980–2020, while evapotranspiration trended upward (12.9 mm/decade, p<0.01), which is slower than precipitation (15 mm/decade, p<0.01). On the Tibetan Plateau, spatial-temporal differences in temperature, precipitation, and evapotranspiration dominate the variations in terrestrial water storage. The change in terrestrial water storage was relatively stable from 2003 to 2011, but decreased from 2012 to 2016. Terrestrial water storage increased in endorheic basins while decreasing in exorheic basins. Partial correlation analysis indicates a negative correlation between the terrestrial water storage anomaly and the temperature. It is found that terrestrial water storage and net precipitation are positively correlated in the Yangtze River Basin and the northeast of the endorheic basins. However, the Qaidam Basin and the north part of the Yellow River Basin are negatively correlated. Under the current climate change state (the increased rate of precipitation is faster than actual evapotranspiration), vegetation change has an insignificant impact on the changes in terrestrial water storage. In contrast, changes in terrestrial water storage (surplus/deficit) significantly affect vegetation changes (greening/browning) in parts of the Tibetan Plateau. The study contributes to a deeper understanding of the relationship between water system changes and vegetation on the Tibetan Plateau.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3