Identifying and Predicting the Responses of Multi-Altitude Vegetation to Climate Change in the Alpine Zone

Author:

Chen Xin12ORCID,Guan Tiesheng234,Zhang Jianyun23,Liu Yanli2ORCID,Jin Junliang34,Liu Cuishan23,Wang Guoqing24ORCID,Bao Zhenxin24ORCID

Affiliation:

1. School of Civil Engineering, Tianjin University, Tianjin 300072, China

2. Nanjing Hydraulic Research Institute, Nanjing 210098, China

3. Yangtze Institute for Conservation and Development, Nanjing 210098, China

4. Research Center for Climate Change of Ministry of Water Resources, Nanjing 210029, China

Abstract

Global climate change has affected vegetation cover in alpine areas. In this paper, we analyzed the correlation between Leaf Area Index (LAI) and climate factors of the Yarlung Tsangpo River basin, and identified their contributions using the quantitative analysis method. The results show that the vegetation cover in the study area generally exhibited an increasing trend. Grassland in the middle- and high-altitude areas was the main contributing area. Temperature is the dominant climatic factor affecting the change, the effect of which increases with the rise in elevation. The influences of precipitation and radiation had obvious seasonality and regionality. The vegetation illustrated a lag response to climate drivers. With the change in the elevation band, the response time to precipitation was significantly less than that to air temperature in the low-elevation area, while the opposite trend was observed in the high-elevation area. In the future, the LAI of the watershed will show different characteristics at different time points, with the increases in the LAI in autumn and winter becoming the main factors for the future increase in the LAI. This provides a crucial basis upon which to explore hydrological and ecological processes as important components of the Third Pole region.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Special Project for the Second Tibetan Plateau Scientific Expedition and Research

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3