Review of deep fluids in sedimentary basins and their influence on resources, with a focus on oil and geothermal exploitation

Author:

Lu Jia,Li Chuanming,Wang Maoyun,Zhang Chengju

Abstract

Deep fluid activity is widespread in large oil-gas basins around the world. Deep fluids, as the links between internal and external factors of a basin, run in the way of organic-inorganic interactions through the oil-gas formation and aggregation. Herein, the identification characteristics of deep fluids in sedimentary basins as well as their influence on oil-gas reservoir formation and geothermal resource are summarized. The deep fluids of sedimentary basins are identified from three aspects, including mineral composition, fluid inclusions, and geochemical characteristics. The effects of deep fluid activities on oil-gas reservoir formation are manifested in two key aspects of matter and energy. As for the matter effects, deep fluids can improve the primary productivity of sedimentary basins and carry abundant inorganic hydrogen, which contributes to improving the hydrocarbon productivity through hydrogenation. As for the energy effects, the heat energy of deep fluids can promote the mature evolution from organic matter to oil and gas. During this process, the heating of deep fluids will cause the oil-generation window depth of the hydrocarbon source rocks to become thinner, and it will also generate very high pressure, which will promote the discharge of abundant hydrocarbons formed by the hydrocarbon source rocks. Furthermore, deep fluids can directly form volcanic rock oil-gas reservoirs. And another manifestation of deep fluid energy is geothermal. And the thermal energy of deep fluids can directly form hot dry rocks, which is the most important existing form of geothermal resources. The geological exploration of hot dry rocks should be supported by further geochemical and geophysical research.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3