Snow identification from unattended automatic weather stations images using DANet

Author:

Gong Jie,Wang Yonghua,Liu Min,Deng Fan

Abstract

Identifying snow phenomena in images from automatic weather station (AWS) is crucial for live weather monitoring. In this paper, we propose a convolutional neural network (CNN) based model for snow identification using images from AWS cameras. The model combines the attention mechanism of the DANet model with the classical residual network ResNet-34 to better extract the features of snow cover in camera images. To improve the generalizability of the model, we also use images from public datasets in addition to images taken by cameras from unmanned weather stations. Our results show that the proposed model achieved a POD of 91.65%, a FAR of 7.34% and a TS score of 85.45%, demonstrating its effectiveness in snow identification. This study has the potential to facilitate more efficient and effective weather monitoring in a variety of locations.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3