Abstract
Extreme rainfall can be a catastrophic trigger for natural disaster events at urban scales. However, there remains large uncertainties as to how satellite precipitation can identify these triggers at a city scale. The objective of this study is to evaluate the potential of satellite-based rainfall estimates to monitor natural disaster triggers in urban areas. Rainfall estimates from the Global Precipitation Measurement (GPM) mission are evaluated over the city of Rio de Janeiro, Brazil, where urban floods and landslides occur periodically as a result of extreme rainfall events. Two rainfall products derived from the Integrated Multi-satellite Retrievals for GPM (IMERG), the IMERG Early and IMERG Final products, are integrated into the Noah Multi-Parameterization (Noah-MP) land surface model in order to simulate the spatial and temporal dynamics of two key hydrometeorological disaster triggers across the city over the wet seasons during 2001–2019. Here, total runoff (TR) and rootzone soil moisture (RZSM) are considered as flood and landslide triggers, respectively. Ground-based observations at 33 pluviometric stations are interpolated, and the resulting rainfall fields are used in an in-situ precipitation-based simulation, considered as the reference for evaluating the IMERG-driven simulations. The evaluation is performed during the wet seasons (November-April), when average rainfall over the city is 4.4 mm/day. Results show that IMERG products show low spatial variability at the city scale, generally overestimate rainfall rates by 12–35%, and impacts on TR and RZSM vary spatially mostly as a function of land cover and soil types. Results based on statistical and categorical metrics show that IMERG skill in detecting extreme events is moderate, with IMERG Final performing slightly better for most metrics. By analyzing two recent storms, we observe that IMERG detects mostly hourly extreme events, but underestimates rainfall rates, resulting in underestimated TR and RZSM. An evaluation of normalized time series using percentiles shows that both satellite products have significantly improved skill in detecting extreme events when compared to the evaluation using absolute values, indicating that IMERG precipitation could be potentially used as a predictor for natural disasters in urban areas.
Subject
General Earth and Planetary Sciences
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献