FSCC: Few-Shot Learning for Macromolecule Classification Based on Contrastive Learning and Distribution Calibration in Cryo-Electron Tomography

Author:

Gao Shan,Zeng Xiangrui,Xu Min,Zhang Fa

Abstract

Cryo-electron tomography (Cryo-ET) is an emerging technology for three-dimensional (3D) visualization of macromolecular structures in the near-native state. To recover structures of macromolecules, millions of diverse macromolecules captured in tomograms should be accurately classified into structurally homogeneous subsets. Although existing supervised deep learning–based methods have improved classification accuracy, such trained models have limited ability to classify novel macromolecules that are unseen in the training stage. To adapt the trained model to the macromolecule classification of a novel class, massive labeled macromolecules of the novel class are needed. However, data labeling is very time-consuming and labor-intensive. In this work, we propose a novel few-shot learning method for the classification of novel macromolecules (named FSCC). A two-stage training strategy is designed in FSCC to enhance the generalization ability of the model to novel macromolecules. First, FSCC uses contrastive learning to pre-train the model on a sufficient number of labeled macromolecules. Second, FSCC uses distribution calibration to re-train the classifier, enabling the model to classify macromolecules of novel classes (unseen class in the pre-training). Distribution calibration transfers learned knowledge in the pre-training stage to novel macromolecules with limited labeled macromolecules of novel class. Experiments were performed on both synthetic and real datasets. On the synthetic datasets, compared with the state-of-the-art (SOTA) method based on supervised deep learning, FSCC achieves competitive performance. To achieve such performance, FSCC only needs five labeled macromolecules per novel class. However, the SOTA method needs 1100 ∼ 1500 labeled macromolecules per novel class. On the real datasets, FSCC improves the accuracy by 5% ∼ 16% when compared to the baseline model. These demonstrate good generalization ability of contrastive learning and calibration distribution to classify novel macromolecules with very few labeled macromolecules.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry

Reference34 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Unsupervised Classification Algorithm for Heterogeneous Cryo-EM Projection Images Based on Autoencoders;International Journal of Molecular Sciences;2023-05-06

2. Unsupervised Heterogeneous Cryo-EM Projection Image Classification Using Autoencoder;2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2022-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3