An Unsupervised Classification Algorithm for Heterogeneous Cryo-EM Projection Images Based on Autoencoders

Author:

Wang Xiangwen1ORCID,Lu Yonggang2ORCID,Lin Xianghong1ORCID,Li Jianwei2,Zhang Zequn1ORCID

Affiliation:

1. College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China

2. School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China

Abstract

Heterogeneous three-dimensional (3D) reconstruction in single-particle cryo-electron microscopy (cryo-EM) is an important but very challenging technique for recovering the conformational heterogeneity of flexible biological macromolecules such as proteins in different functional states. Heterogeneous projection image classification is a feasible solution to solve the structural heterogeneity problem in single-particle cryo-EM. The majority of heterogeneous projection image classification methods are developed using supervised learning technology or require a large amount of a priori knowledge, such as the orientations or common lines of the projection images, which leads to certain limitations in their practical applications. In this paper, an unsupervised heterogeneous cryo-EM projection image classification algorithm based on autoencoders is proposed, which only needs to know the number of heterogeneous 3D structures in the dataset and does not require any labeling information of the projection images or other a priori knowledge. A simple autoencoder with multi-layer perceptrons trained in iterative mode and a complex autoencoder with residual networks trained in one-pass learning mode are implemented to convert heterogeneous projection images into latent variables. The extracted high-dimensional features are reduced to two dimensions using the uniform manifold approximation and projection dimensionality reduction algorithm, and then clustered using the spectral clustering algorithm. The proposed algorithm is applied to two heterogeneous cryo-EM datasets for heterogeneous 3D reconstruction. Experimental results show that the proposed algorithm can effectively extract category features of heterogeneous projection images and achieve high classification and reconstruction accuracy, indicating that the proposed algorithm is effective for heterogeneous 3D reconstruction in single-particle cryo-EM.

Funder

Scientific Research Ability Enhancement Program for Young Teachers of Northwest Normal University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autoencoder with Orthogonal Variant;2023 20th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE);2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3