Bioinformatics and system biology approach to identify the influences of SARS-CoV-2 on metabolic unhealthy obese patients

Author:

Huang Tengda,Jiang Nan,Song Yujia,Pan Hongyuan,Du Ao,Yu Bingxuan,Li Xiaoquan,He Jinyi,Yuan Kefei,Wang Zhen

Abstract

Introduction: The severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has posed a significant challenge to individuals’ health. Increasing evidence shows that patients with metabolic unhealthy obesity (MUO) and COVID-19 have severer complications and higher mortality rate. However, the molecular mechanisms underlying the association between MUO and COVID-19 are poorly understood.Methods: We sought to reveal the relationship between MUO and COVID-19 using bioinformatics and systems biology analysis approaches. Here, two datasets (GSE196822 and GSE152991) were employed to extract differentially expressed genes (DEGs) to identify common hub genes, shared pathways, transcriptional regulatory networks, gene-disease relationship and candidate drugs.Results: Based on the identified 65 common DEGs, the complement-related pathways and neutrophil degranulation-related functions are found to be mainly affected. The hub genes, which included SPI1, CD163, C1QB, SIGLEC1, C1QA, ITGAM, CD14, FCGR1A, VSIG4 and C1QC, were identified. From the interaction network analysis, 65 transcription factors (TFs) were found to be the regulatory signals. Some infections, inflammation and liver diseases were found to be most coordinated with the hub genes. Importantly, Paricalcitol, 3,3′,4,4′,5-Pentachlorobiphenyl, PD 98059, Medroxyprogesterone acetate, Dexamethasone and Tretinoin HL60 UP have shown possibility as therapeutic agents against COVID-19 and MUO.Conclusion: This study provides new clues and references to treat both COVID-19 and MUO.

Publisher

Frontiers Media SA

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3