Deep learning approaches for conformational flexibility and switching properties in protein design

Author:

Rudden Lucas S. P.,Hijazi Mahdi,Barth Patrick

Abstract

Following the hugely successful application of deep learning methods to protein structure prediction, an increasing number of design methods seek to leverage generative models to design proteins with improved functionality over native proteins or novel structure and function. The inherent flexibility of proteins, from side-chain motion to larger conformational reshuffling, poses a challenge to design methods, where the ideal approach must consider both the spatial and temporal evolution of proteins in the context of their functional capacity. In this review, we highlight existing methods for protein design before discussing how methods at the forefront of deep learning-based design accommodate flexibility and where the field could evolve in the future.

Publisher

Frontiers Media SA

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry

Reference72 articles.

1. Detection of a peptide biomarker by engineered yeast receptors;Adeniran;ACS Synth. Biol.,2018

2. Design principles of protein switches;Alberstein;Curr. Opin. Struct. Biol.,2022

3. The Rosetta all-atom energy function for macromolecular modeling and design;Alford;J. Chem. Theory Comput.,2017

4. Designing feature-controlled humanoid antibody discovery libraries using generative adversarial networks;Amimeur,2020

5. Fully differentiable full-atom protein backbone generation;Anand,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3