G-PLIP: Knowledge graph neural network for structure-free protein-ligand bioactivity prediction

Author:

Crouzet Simon J.ORCID,Lieberherr Anja Maria,Atz KennethORCID,Nilsson Tobias,Sach-Peltason LisaORCID,Müller Alex T.,Peraro Matteo DalORCID,Zhang Jitao DavidORCID

Abstract

AbstractProtein-ligand interaction (PLI) shapes efficacy and safety profiles of small molecule drugs. Most existing methods rely on either structural information or resource-intensive computation to predict PLI, making us wonder whether it is possible to perform structure-free PLI prediction with low computational cost. Here we show that a light-weight graph neural network (GNN), trained with quantitative PLIs of a small number of proteins and ligands, is able to predict the strength of unseen PLIs. The model has no direct access to structural information of protein-ligand complexes. Instead, the predictive power is provided by encoded knowledge of proteins and ligands, including primary protein sequence, gene expression, protein-protein interaction network, and structural similarities between ligands. The novel model performs competitively with or better than structure-aware models. Our observations suggest that existing PLI-prediction methods may be further improved by using representation learning techniques that embed biological and chemical knowledge.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3