Long-term consequences of reduced availability and compensatory supplementation of sialylated HMOs on cognitive capabilities

Author:

Pisa Edoardo,Traversa Alice,Caputo Viviana,Ottomana Angela Maria,Hauser Jonas,Macrì Simone

Abstract

Breast milk (BM) is the optimal source of nutrition for mammals’ early life. It exerts multiple benefits, including the development of cognitive capabilities and protection against several diseases like obesity and infection of the respiratory tract. However, which components of BM are involved in individual development has remained elusive. Sialylated human milk oligosaccharides (HMOs) may constitute a valid candidate, whereby they represent the principal source of sialic acid and act as building blocks for brain development. We hypothesize that the reduced availability of two HMOs, sialyl(alpha2,6)lactose (6′SL) and sialyl(alpha2,3)lactose (3′SL), may impair attention, cognitive flexibility, and memory in a preclinical model and that the exogenous supplementation of these compounds may contrast the observed deficits. We evaluated cognitive capabilities in a preclinical model exposed to maternal milk containing reduced concentrations of 6′SL and 3′SL during lactation. To modulate their concentrations, we utilized a preclinical model characterized by the absence of genes that synthesize 3′SL and 6′SL (B6.129-St3gal4tm1.1Jxm and St6gal1tm2Jxm, double genetic deletion), producing milk lacking 3′SL and 6′SL. Then, to ensure exposure to 3′SL–6′SL-poor milk in early life, we adopted a cross-fostering protocol. The outcomes assessed in adulthood were different types of memory, attention and information processing, some of which are part of executive functions. Then, in the second study, we evaluated the long-term compensatory potential of the exogenous oral supplementation of 3′SL and 6′SL during lactation. In the first study, exposure to HMO-poor milk resulted in reduced memory and attention. Specifically, it resulted in impaired working memory in the T-maze test, in reduced spatial memory in the Barnes maze, and in impaired attentional capabilities in the Attentional set-shifting task. In the second part of the study, we did not observe any difference between experimental groups. We hypothesize that the experimental procedures utilized for the exogenous supplementation may have impacted our ability to observe the cognitive read-out in vivo. This study suggests that early life dietary sialylated HMOs play a crucial role in the development of cognitive functions. Future studies are needed to clarify if an exogenous supplementation of these oligosaccharides may compensate for these affected phenotypes.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience

Reference35 articles.

1. The novel object recognition memory: neurobiology, test procedure, and its modifications.;Antunes;Cogn. Process.,2012

2. Milk production and consumption and growth of young of wild mice after ten generations in a cold environment.;Barnett;J. Physiol.,1984

3. Medial frontal cortex mediates perceptual attentional set shifting in the rat.;Birrell;J. Neurosci.,2000

4. Human milk oligosaccharides: every baby needs a sugar mama.;Bode;Glycobiology,2012

5. Tattooing various combinations of ears, tail, and toes to identify mice reliably and permanently.;Chen;J. Am. Assoc. Lab. Anim. Sci.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3