Ensemble Transform Kalman Incremental Smoother and Its Application to Data Assimilation and Prediction

Author:

Lin Zhe-Hui,Yang Shu-Chih,Kalnay Eugenia

Abstract

The analysis correction made by data assimilation (DA) can introduce model shock or artificial signal, leading to degradation in forecast. In this study, we propose an Ensemble Transform Kalman Incremental Smoother (ETKIS) as an incremental update solution for ETKF-based algorithms. ETKIS not only has the advantages as other incremental update schemes to improve the balance in the analysis but also provides effective incremental correction, even under strong nonlinear dynamics. Results with the shallow-water model show that ETKIS can smooth out the imbalance associated with the use of covariance localization. More importantly, ETKIS preserves the moving signal better than the overly smoothed corrections derived by other incremental update schemes. Results from the Lorenz 3-variable model show that ETKIS and ETKF achieve similar accuracy at the end of the assimilation window, while the time-varying increment of ETKIS allows the ensemble to avoid strong corrections during strong nonlinearity. ETKIS shows benefits over 4DIAU by better capturing the evolving error and constraining the over-dispersive spread under conditions of long assimilation windows or a high perturbation growth rate.

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3