Influence of the Self-Consistent Regional Ensemble Background Error Covariance on Hurricane Inner-Core Data Assimilation with the GSI-Based Hybrid System for HWRF

Author:

Pu Zhaoxia1,Zhang Shixuan1,Tong Mingjing2,Tallapragada Vijay2

Affiliation:

1. Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

2. Environmental Modeling Center, National Centers for Environmental Prediction, College Park, Maryland

Abstract

Abstract An initial vortex spindown, or strong adjustment to the structure and intensity of a hurricane’s initial vortex, presents a significant problem in hurricane forecasting, as with the NCEP Hurricane Weather Research and Forecasting Model (HWRF), because it can cause significantly degraded intensity forecasts. In this study, the influence of the self-consistent regional ensemble background error covariance on assimilating hurricane inner-core tail Doppler radar (TDR) observations in HWRF is examined with the NCEP gridpoint statistical interpolation (GSI)-based ensemble–three-dimensional variational (3DVAR) hybrid data assimilation system. It is found that the resolution of the background error covariance term, coming from the ensemble forecasts, has notable influence on the assimilation of hurricane inner-core observations and subsequent forecasting results. Specifically, the use of ensemble forecasting at high-resolution native grids results in significant reduction of the vortex spindown problem and thus leads to improved hurricane intensity forecasting. Further diagnoses are conducted to examine the spindown problem with a gradient wind balance. It is found that artificial vortex initialization, performed before data assimilation, can cause strong supergradient winds or imbalance in the vortex inner-core region. Assimilation of hurricane inner-core TDR data can significantly mitigate this imbalance by reducing the supergradient effects. Compared with the use of a global ensemble background error term, application of the self-consistent regional ensemble background covariance to inner-core data assimilation leads to better representation of the mesoscale hurricane inner-core structures. It can also result in more realistic vortex structures in data assimilation even when the observational data are unevenly distributed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3