Joint Interpolation and Representation Learning for Irregularly Sampled Satellite-Derived Geophysical Fields

Author:

Fablet Ronan,Beauchamp Maxime,Drumetz Lucas,Rousseau François

Abstract

Earth observation satellite missions provide invaluable global observations of geophysical processes in play in the atmosphere and the oceans. Due to sensor technologies (e.g., infrared satellite sensors), atmospheric conditions (e.g., clouds and heavy rains), and satellite orbits (e.g., polar-orbiting satellites), satellite-derived observations often involve irregular space–time sampling patterns and large missing data rates. Given the current development of learning-based schemes for earth observation, the question naturally arises whether one might learn some representation of the underlying processes as well as solve interpolation issues directly from these observation datasets. In this article, we address these issues and introduce an end-to-end neural network learning scheme, which relies on an energy-based formulation of the interpolation problem. This scheme investigates different learning-based priors for the underlying geophysical field of interest. The end-to-end learning procedure jointly solves the reconstruction of gap-free fields and the training of the considered priors. Through different case studies, including observing system simulation experiments for sea surface geophysical fields, we demonstrate the relevance of the proposed framework compared with optimal interpolation and other state-of-the-art data-driven schemes. These experiments also support the relevance of energy-based representations learned to characterize the underlying processes.

Publisher

Frontiers Media SA

Subject

Applied Mathematics,Statistics and Probability

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data‐Driven Spatio‐Temporal Interpolation for Satellite‐Derived Geophysical Tracers;Multitemporal Earth Observation Image Analysis;2024-07-19

2. Scale-Aware Neural Calibration for Wide Swath Altimetry Observations;IEEE Transactions on Geoscience and Remote Sensing;2024

3. Uncertainty Quantification When Learning Dynamical Models and Solvers With Variational Methods;Journal of Advances in Modeling Earth Systems;2023-10-29

4. AI Data-Driven Sediments Dynamics Short Term Forecast From Observation in the Bay of Biscay;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

5. 4DVarNet-SSH: end-to-end learning of variational interpolation schemes for nadir and wide-swath satellite altimetry;Geoscientific Model Development;2023-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3