Modeling Energy Consumption Using Machine Learning

Author:

Sarswatula Sai Aravind,Pugh Tanna,Prabhu Vittaldas

Abstract

Electrical, metal, plastic, and food manufacturing are among the major energy-consuming industries in the U.S. Since 1981, the U.S. Department of Energy Industrial Assessments Centers (IACs) have conducted audits to track and analyze energy data across several industries and provided recommendations for improving energy efficiency. In this article, we used statistical and machine learning techniques to draw insights from this IAC dataset with over 15,000 samples collected from 1981 to 2013. We developed predictive models for energy consumption using machine learning techniques such as Multiple Linear Regression, Random Forest Regressor, Decision Tree Regressor, and Extreme Gradient Boost Regressor. We also developed classifier models using Support Vector Machines, Random Forest, K-Nearest Neighbor (KNN), and deep learning. Results using this data set indicate that Random Forest Regressor is the best prediction technique with an R2 of 0.869, and the Random Forest classifier is the best technique with precision, recall, F1 score, and accuracy of 0.818, 0.884, 0.844, and 0.883, respectively. Deep learning also performed competitively with an accuracy of about 0.88 in training and testing after 10 epochs. The machine learning models could be useful in benchmarking the energy consumption of factories and identifying opportunities to improve energy efficiency.

Publisher

Frontiers Media SA

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3