Comparative Analysis of Machine Learning Models for Predictive Maintenance of Ball Bearing Systems

Author:

Farooq Umer1ORCID,Ademola Moses1,Shaalan Abdu1ORCID

Affiliation:

1. School of Engineering, Faculty of Technology, University of Sunderland, Sunderland SR6 0DD, UK

Abstract

In the era of Industry 4.0 and beyond, ball bearings remain an important part of industrial systems. The failure of ball bearings can lead to plant downtime, inefficient operations, and significant maintenance expenses. Although conventional preventive maintenance mechanisms like time-based maintenance, routine inspections, and manual data analysis provide a certain level of fault prevention, they are often reactive, time-consuming, and imprecise. On the other hand, machine learning algorithms can detect anomalies early, process vast amounts of data, continuously improve in almost real time, and, in turn, significantly enhance the efficiency of modern industrial systems. In this work, we compare different machine learning and deep learning techniques to optimise the predictive maintenance of ball bearing systems, which, in turn, will reduce the downtime and improve the efficiency of current and future industrial systems. For this purpose, we evaluate and compare classification algorithms like Logistic Regression and Support Vector Machine, as well as ensemble algorithms like Random Forest and Extreme Gradient Boost. We also explore and evaluate long short-term memory, which is a type of recurrent neural network. We assess and compare these models in terms of their accuracy, precision, recall, F1 scores, and computation requirement. Our comparison results indicate that Extreme Gradient Boost gives the best trade-off in terms of overall performance and computation time. For a dataset of 2155 vibration signals, Extreme Gradient Boost gives an accuracy of 96.61% while requiring a training time of only 0.76 s. Moreover, among the techniques that give an accuracy greater than 80%, Extreme Gradient Boost also gives the best accuracy-to-computation-time ratio.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3