Improving monthly precipitation prediction accuracy using machine learning models: a multi-view stacking learning technique

Author:

El Hafyani Mounia,El Himdi Khalid,El Adlouni Salah-Eddine

Abstract

This research paper explores the implementation of machine learning (ML) techniques in weather and climate forecasting, with a specific focus on predicting monthly precipitation. The study analyzes the efficacy of six multivariate machine learning models: Decision Tree, Random Forest, K-Nearest Neighbors (KNN), AdaBoost, XGBoost, and Long Short-Term Memory (LSTM). Multivariate time series models incorporating lagged meteorological variables were employed to capture the dynamics of monthly rainfall in Rabat, Morocco, from 1993 to 2018. The models were evaluated based on various metrics, including root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). XGBoost showed the highest performance among the six individual models, with an RMSE of 40.8 (mm). In contrast, Decision Tree, AdaBoost, Random Forest, LSTM, and KNN showed relatively lower performances, with specific RMSEs ranging from 47.5 (mm) to 51 (mm). A novel multi-view stacking learning approach is introduced, offering a new perspective on various ML strategies. This integrated algorithm is designed to leverage the strengths of each individual model, aiming to substantially improve the precision of precipitation forecasts. The best results were achieved by combining Decision Tree, KNN, and LSTM to build the meta-base while using XGBoost as the second-level learner. This approach yielded a RMSE of 17.5 millimeters. The results show the potential of the proposed multi-view stacking learning algorithm to refine predictive results and improve the accuracy of monthly precipitation forecasts, setting a benchmark for future research in this field.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3