Machine learning approaches for improving precipitation forecasting in the Ambica River basin of Navsari District, Gujarat

Author:

Baudhanwala Divyang1,Mehta Darshan1ORCID,Kumar Vijendra2

Affiliation:

1. a Civil Engineering Department, Dr. S. & S. S. Ghandhy Government Engineering College, Surat, Gujarat, India

2. b Department of Civil Engineering, Dr Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India

Abstract

Abstract The article examines machine learning models for precipitation forecasting in the Ambica River basin, addressing the important requirement for accurate hydrological forecasts in water resource management. Using a comprehensive collection of meteorological variables such as temperature, humidity, wind speed, and precipitation, four separate models are used: Support Vector Regression (SVR), Random Forest (RF), Decision Tree (DT), and Multiple Linear Regression (MLR). These models’ performance is rigorously evaluated using various assessment indicators. The cross-correlation function (XCF) is used in this study to evaluate the correlations between climatic variables and precipitation. The XCF analysis reveals several noteworthy trends, such as a high link between maximum temperature and precipitation, with maxima consistently found at months across all four sites. Furthermore, relative humidity and wind speed have significant connections with precipitation. The findings highlight the value of machine learning approaches in improving precipitation forecast accuracy. The RF and SVR models typically outperform, with values ranging from 0.74 to 0.91. This impressive accuracy underlines their effectiveness in precipitation forecasting, beating competing models in both the training and testing stages. These findings have significant consequences for hydrological processes, notably in the Ambica River basin, where accurate precipitation forecasting is critical for sustainable water resource management.

Publisher

IWA Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3