Efficient Irrigation of Maize Through Soil Moisture Monitoring and Modeling

Author:

Camporese Matteo,Gumiere Silvio J.,Putti Mario,Botter Gianluca

Abstract

Agriculture is the major user of water resources, accounting for 70% of global freshwater demand. As the demand for clean water increases, so does the need to implement more efficient strategies for water management in irrigated agriculture. While the benefits of precision irrigation in high-value crops, such as cannabis, tomatoes, and potatoes, are fully recognized, there is still need to investigate and implement cheap and efficient irrigation strategies for widespread low-value crops such as maize. In this study, the soil moisture dynamics in a sprinkler-irrigated maize field in Veneto (Northeastern Italy) was monitored using six time domain reflectometry (TDR) probes for the entire growing season. The TDR sensors were positioned at different depths into two separate sites: an Uninformed Site irrigated based on the farmer's experience and an Informed Site in which a water balance irrigation strategy was applied based on soil moisture measurements. A parsimonious hydrological model was then implemented and calibrated to quantify the different water balance terms (precipitation, evapotranspiration, lateral fluxes, and deep percolation). The comparison between the water budget terms in the two sites highlights that soil moisture monitoring during agriculture activities leads to substantial savings in terms of irrigation water volumes requirements and cost, without compromising the productivity of the crop field. A simplified upscaling of the results at the regional scale, assuming average conditions as in this study site and growing season, reveals that potentially significant economic savings, compared to the total profits linked to maize crops, could be possible.

Publisher

Frontiers Media SA

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3