Nitrogen and phosphorus leaching losses under cropping and zone-specific variable-rate irrigation

Author:

Drewry John J.ORCID,Hedley Carolyn B.ORCID,McNeill Stephen J.,El-Naggar Ahmed G.ORCID,Karakkattu Kishor K.,Horne David J.

Abstract

Context Agricultural land use is intensifying globally. Irrigation and other farm practices associated with intensification, such as cultivation, grazing, and fertiliser application, can increase nutrient losses. Variable rate irrigation (VRI) systems manage irrigation to spatially variable soils and different crops (zones). We lack knowledge on nutrient losses under zone-specific irrigation for mixed-cropping systems (combined crop and livestock grazing). Aims This study evaluated drainage, nitrogen, and phosphorus leaching losses under zone-specific irrigation for a temperate mixed-cropping system. Methods The study site had sheep grazing and crops including peas, beans, wheat, turnips, plantain, and ryegrass-white clover pasture. It had a variable-rate centre-pivot irrigator for two soil zones (free draining Zone 1; poorly drained Zone 2). Drainage flux meters (DFMs) collected drainage leachate, and samples for measurement of nitrogen (N) and phosphorus (P) concentrations. Soil water balance data and statistical modelling evaluated nutrient leaching losses over 5 years. Key results The mean leaching load of NOx-N (nitrate + nitrite) across 5 years was 133 (s.d. 77) and 121 (s.d. 97) kg N/ha/year for Zone 1 and Zone 2, respectively. Similarly, the mean leaching load of reactive P across all years was 0.17 (s.d. 0.30) and 0.14 (s.d. 0.14) kg P/ha/year for Zone 1 and Zone 2, respectively. The nitrogen concentrations and loads generally had greater uncertainty in Zone 2. Conclusions The DFMs worked well for the free draining sandy soil. However, fewer samples were collected in the silt soil, requiring the statistical modelling developed in this study. This study gave a reasonable estimate of annual leaching load means, but the indicators of their within-year variation were not reliable, partly due to differences in sampling frequency. With some exceptions, there was generally more NOx-N leaching from the free draining Zone 1. VRI provided a system to control irrigation-related drainage and leaching in these soil zones. Implications Drainage flux meters are more reliable in well-drained than in poorly drained soil. Given the lack of published studies, this study has improved knowledge of nutrient losses under zone-specific irrigated mixed-cropping systems in a temperate climate.

Funder

Ministry of Business, Innovation and Employment

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Reference64 articles.

1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and drainage paper No. 56. Food and Agriculture Organization of the United Nations, Rome. Available at [Verified 11 June 2018]

2. Irrigation management, nitrogen fertilization and nitrogen losses in the return flows of La Violada irrigation district (Spain).;Agriculture, Ecosystems & Environment,2012

3. Efficient irrigation of maize through soil moisture monitoring and modeling.;Frontiers in Water,2021

4. Chappell PR (2015) The climate and weather of Manawatu-Wanganui. NIWA Science and Technology Series 66. NIWA, Wellington. Available at [Verified 31 May 2018]

5. Soil physical quality response to sugarcane expansion in Brazil.;Geoderma,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3