Hot Spots and Climate Trends of Meteorological Droughts in Europe–Assessing the Percent of Normal Index in a Single-Model Initial-Condition Large Ensemble

Author:

Böhnisch Andrea,Mittermeier Magdalena,Leduc Martin,Ludwig Ralf

Abstract

Drought, caused by a prolonged deficit of precipitation, bears the risk of severe economic and ecological consequences for affected societies. The occurrence of this significant hydro-meteorological hazard is expected to strongly increase in many regions due to climate change, however, it is also subject to high internal climate variability. This calls for an assessment of climate trends and hot spots that considers the variations due to internal variability. In this study, the percent of normal index (PNI), an index that describes meteorological droughts by the deviation of a long-term reference mean, is analyzed in a single-model initial-condition large ensemble (SMILE) of the Canadian regional climate model version 5 (CRCM5) over Europe. A far future horizon under the Representative Concentration Pathway 8.5 is compared to the present-day climate and a pre-industrial reference, which is derived from pi-control runs of the CRCM5 representing a counterfactual world without anthropogenic climate change. Our analysis of the SMILE reveals a high internal variability of drought occurrence over Europe. Considering the high internal variability, our results show a clear overall increase in the duration, number and intensity of droughts toward the far future horizon. We furthermore find a strong seasonal divergence with a distinct increase in summer droughts and a decrease in winter droughts in most regions. Additionally, the percentage of summer droughts followed by wet winters is increasing in all regions except for the Iberian Peninsula. Because of particularly severe drying trends, the Alps, the Mediterranean, France and the Iberian Peninsula are suggested to be considered as drought hot spots. Due to the simplicity and intuitivity of the PNI, our results derived from this index are particularly appropriate for region-specific communication purposes and outreach.

Funder

Bayerisches Staatsministerium für Umwelt und Verbraucherschutz

Publisher

Frontiers Media SA

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3