Author:
Tucker Keira,Stone Wendy,Botes Marelize,Feil Edward J.,Wolfaardt Gideon M.
Abstract
With their large, diverse microbial communities chronically exposed to sub-inhibitory antibiotic concentrations, wastewater treatment works (WWTW) have been deemed hotspots for the emergence and dissemination of antimicrobial resistance, with growing concern about the transmission of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) into receiving surface waters. This study explored (1) the prevalence of ARG and ARB in local WWTW, (2) the effect of sub-inhibitory antimicrobial exposure on ARG copy numbers in pure cultures from WWTW, and (3) two WWTW with different treatment configurations. For each WWTW, qPCR determined the prevalence ofmcr3, sul1, sul2, andblaKPCduring the treatment process, and culture methods were used to enumerate and identify ARB. Bacterial colonies isolated from effluent samples were identified by 16S rDNA sequencing and their respective minimum inhibitory concentrations (MIC) were determined. These were compared to the MICs of whole community samples from the influent, return activated sludge, and effluent of each WWTW. Resistance genes were quantified in 11 isolated cultures before and after exposure to sub-MIC concentrations of target antibiotics. The numbers of ARG and ARB in both WWTW effluents were notably reduced compared to the influent.Sul1andsul2gene copies increased in cultures enriched in sub-MIC concentrations of sulfamethoxazole, whileblaKPCdecreased after exposure to amoxicillin. It was concluded, within the parameters of this study, that WWTW assist in reducing ARG and ARB, but that sub-inhibitory exposure to antimicrobials has a varied effect on ARG copy number in pure cultures.
Funder
National Research Foundation
Water Research Commission
Department of Science and Innovation, South Africa
Subject
Water Science and Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献