Study of a new biocoagulant/bioflocculant mixture based on Boscia senegalensis seeds powder and Aloe vera leaves extract for the treatment of raw water intended for human consumption in rural areas of Sub-Saharan Africa

Author:

Konkobo Frédéric Anderson,Diao Mamounata,Ouédraogo Elisabeth Rakisewendé,Barry Poussian Raymond,Santara Balamoussa,Zongo Sandrine,Roamba Noëlle Edwige,Dakuyo Roger,Sanou Abdoudramane,Kaboré Kabakdé,Bazié David,Savadogo Paul Windinpsidi,Dicko Mamoudou Hama

Abstract

IntroductionThe research of natural and sustainable solutions to improve rural water quality in developing countries of Sub-Saharan Africa represents a major challenge. It is in this context that the aim of this study was to evaluate the efficacy of a biocoagulant/bioflocculant mixture based on Boscia senegalensis seeds powder and Aloe vera leaves extract for treating water intended for human consumption in rural areas.MethodsTo do this, 100 g of Boscia senegalensis seeds powder and 50 g of Aloe vera leaves extract were prepared separately as aqueous solutions in 1 L of distilled water, then applied, respectively, as biocoagulant for Boscia and bioflocculant for Aloe to raw water samples in jar tests. The quality of the treated water was evaluated, and compared with WHO standards of acceptability.Results and discussionExperimental results showed that the Boscia senegalensis biocoagulant (at 7 mL/L) initially reduced turbidity by 85% after 2 h of decantation. When combined with Aloe bioflocculant (at 0.4 mL/L), a 99% reduction was obtained after just 15 min of decantation. Quality control of the water treated with this biocoagulant/bioflocculant mixture showed perfect compliance of physicochemical parameters with WHO standards, and almost total elimination of pathogenic microorganisms. These results demonstrate the effectiveness of this new Boscia/Aloe mixture in the rapid potabilization of raw water intended for human consumption. However, prolonged storage of water treated with the Boscia/Aloe mixture at room temperature may lead to further bacterial proliferation due to the remaining organic matter. To avoid this problem, additional disinfection methods such as boiling, SODIS (Solar Disinfection) method or sand filtration are recommended for prolonged storage of treated water. Ultimately, the adoption of this environmentally-friendly biotechnology could not only improve public health, but also empower local communities in Sub-Saharan Africa by providing them with a local and effective methodology for tackling the growing challenges associated with access to drinking water.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3