Uncertainty quantification of machine learning models to improve streamflow prediction under changing climate and environmental conditions

Author:

Liu Siyan,Lu Dan,Painter Scott L.,Griffiths Natalie A.,Pierce Eric M.

Abstract

Machine learning (ML) models, and Long Short-Term Memory (LSTM) networks in particular, have demonstrated remarkable performance in streamflow prediction and are increasingly being used by the hydrological research community. However, most of these applications do not include uncertainty quantification (UQ). ML models are data driven and can suffer from large extrapolation errors when applied to changing climate/environmental conditions. UQ is required to quantify the influence of data noises on model predictions and avoid overconfident projections in extrapolation. In this work, we integrate a novel UQ method, called PI3NN, with LSTM networks for streamflow prediction. PI3NN calculates Prediction Intervals by training 3 Neural Networks. It can precisely quantify the predictive uncertainty caused by the data noise and identify out-of-distribution (OOD) data in a non-stationary condition to avoid overconfident predictions. We apply the PI3NN-LSTM method in the snow-dominant East River Watershed in the western US and in the rain-driven Walker Branch Watershed in the southeastern US. Results indicate that for the prediction data which have similar features as the training data, PI3NN precisely quantifies the predictive uncertainty with the desired confidence level; and for the OOD data where the LSTM network fails to make accurate predictions, PI3NN produces a reasonably large uncertainty indicating that the results are not trustworthy and should avoid overconfidence. PI3NN is computationally efficient, robust in performance, and generalizable to various network structures and data with no distributional assumptions. It can be broadly applied in ML-based hydrological simulations for credible prediction.

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Reference42 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3