A Hybrid Dataset of Historical Cool-Season Lake Effects From the Eastern Great Lakes of North America

Author:

Ellis Andrew W.,Suriano Zachary J.

Abstract

The moistening of cold air passing over the Great Lakes of North America has a profound impact on the cool season climate of regions downwind, from relatively benign air mass modification to highly-impactful snowfall events. The importance of lake effects has led to the development of varying techniques for systematically identifying lake-effect days. The results of two such methods are merged here to yield a more thorough record of lake-effect days for the eastern Great Lakes. Comparative analysis of the data sets illustrates the different objectives of the two methodologies, where one identifies days with a synoptic setup conducive to lake-effect snowfall, and the other identifies days with lake-effect modification of the overlying air mass. A smaller population of “absolute” lake-effect days are those identified by both methods, while a larger population of “hybrid” lake-effect days are absolute days plus those identified by one method but not the other. For a 51-year study period ending with the 2014–15 cool season, the absolute data set yields a mean of about 15 lake-effect days per year, or 8% of the November through April season, while the hybrid data set yields a mean of 56 lake-effect days per year, or 31% of the season. The frequencies of absolute, air mass modification-defined, and hybrid lake-effect days decreased through the study period, with days within the hybrid data set declining at a statistically significant rate of 2.8 days per decade, although most obviously from the late 1970s through the early 2000s. The result is a general drying of the cool-season lake-effect hydroclimate. The merged data set offers a more thorough historical record of days available for atmospheric and hydroclimatic study of the lake-effect phenomenon within the eastern Great Lakes region.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference17 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synoptic Conditions and Lake-to-Lake Connections for Days with Lake Effect on All of the Great Lakes;Journal of Applied Meteorology and Climatology;2024-05

2. Synoptic Climatology of Central U.S. Snowfall;Journal of Applied Meteorology and Climatology;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3