Synoptic Climatology of Central U.S. Snowfall

Author:

Suriano Zachary J.1ORCID,Loewy Charles1,Uz Jamie2

Affiliation:

1. a Department of Earth, Environmental and Atmospheric Sciences, Western Kentucky University, Bowling Green, Kentucky

2. b Department of Geography/Geology, University of Nebraska at Omaha, Omaha, Nebraska

Abstract

Abstract Prior research evaluating snowfall conditions and temporal trends in the United States often acknowledges the role of various synoptic-scale weather systems in governing snowfall variability. While synoptic classifications have been performed in other regions of North America in applications to snowfall, there remains a need for enhanced understanding of the atmospheric mechanisms of snowfall in the central United States. Here we conduct a novel synoptic climatological investigation of the weather systems responsible for snowfall in the central United States from 1948 to 2021 focused on their identification and the quantification of associated snowfall totals and events. Ten unique synoptic weather types (SWTs) were identified, each resulting in distinct regions of enhanced snowfall across the study domain aligning with regions of sufficiently cold air temperatures and forcing mechanisms. While a substantial proportion of seasonal snowfall is attributed to SWTs associated with surface troughs and/or midlatitude cyclones, in portions of the southeastern and western study domain, as much as 70% of seasonal snowfall occurs during systems with high pressure centers as the domain’s synoptic-scale forcing. Easterly flow, potentially resulting in topographic uplift from high pressure to east of the domain, was associated with between 15% and 25% of seasonal snowfall in Nebraska and South Dakota. On average, 64.8% of the SWT occurrences resulted in snowfall within the study region, ranging between 40.1% and 93.5% by SWT. Synoptic climatological investigations provide valuable insights into the unique weather systems that generate hydroclimatic variability. Significance Statement By evaluating the weather patterns that are responsible for snowfall in the central United States, key insights can be gained into how and why snowfall varies and potentially changes over space and time. Using an approach that categorizes weather patterns based on their similarities, here 10 unique snowfall-producing weather patterns are identified and analyzed from 1948 to 2021. Each pattern resulted in different snowfall amounts across the central United States, varying substantially spatially and within the calendar year. Approximately 65% of the time that these weather patterns occur, snowfall is observed in the region. The majority of snowfall-producing weather patterns are associated with low pressure systems, but in some regions up to 70% of snowfall is associated with instances of high pressure in which winds can cause upward motions associated with topography.

Funder

WKU Ogden College of Science and Engineering

UNO Office of Research and Creative Activity

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference40 articles.

1. Distribution of single-banded snowfall in central U.S. cyclones;Baxter, M. A.,2017

2. Synoptic conditions for rapid snowmelt in the Polish-German lowlands;Bednorz, E.,2009

3. Temporal and spatial characteristics of snowstorms in the contiguous United States;Changnon, S. A.,2006

4. Subseasonal-to-seasonal extreme precipitation events in the contiguous United States: Generation of a database and climatology;Dickinson, T. A.,2021

5. A hybrid dataset of historical cool-season lake effects from the eastern Great Lakes of North America;Ellis, A. W.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3