Explicit simulation of environmental gas tracers with integrated surface and subsurface hydrological models

Author:

Delottier Hugo,Peel Morgan,Musy Stéphanie,Schilling Oliver S.,Purtschert Roland,Brunner Philip

Abstract

Environmental gas tracers allow inferring groundwater travel times and mixing ratios. Their concentrations are commonly interpreted with simplified and indirect approaches that are conceptually at odds with the high degree of complexity found in natural systems. However, the information content of the tracers can potentially be fully explored through the explicit simulation of an advection-dispersion transport equation, for example using integrated surface-subsurface hydrological models (ISSHMs). These integrated models can be used to explicitly simulate environmental tracers in complex environments. ISSHMs are usually variably saturated flow models. However, these models do not explicitly simulate gas partitioning with the aqueous phase, restricting explicit simulation of gas tracers to fully saturated conditions or to tracers with very low solubilities. We propose a mathematical formulation for the production of environmental gas tracers that are emanated in the subsurface. The production is scaled according to gas/water partitioning and water saturation, which is already computed by the model. Therefore, ISSHMs can now be used to their full potential to explicitly simulate tracer concentrations under variably saturated and dynamic conditions. The new formulation has been successfully verified against reference simulations provided with a multi-phase flow and transport model. In addition, explicit simulation of 222Rn and 37Ar groundwater concentrations in a synthetic alluvial river-groundwater system was demonstrated, for the first time, with an ISSHM.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Frontiers Media SA

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3