HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model
-
Published:2024-05-02
Issue:8
Volume:17
Page:3559-3578
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Tang QiORCID, Delottier Hugo, Kurtz WolfgangORCID, Nerger LarsORCID, Schilling Oliver S.ORCID, Brunner PhilipORCID
Abstract
Abstract. This article describes a modular ensemble-based data assimilation (DA) system which is developed for an integrated surface–subsurface hydrological model. The software environment for DA is the Parallel Data Assimilation Framework (PDAF), which provides various assimilation algorithms like the ensemble Kalman filters, non-linear filters, 3D-Var and combinations among them. The integrated surface–subsurface hydrological model is HydroGeoSphere (HGS), a physically based modelling software for the simulation of surface and variably saturated subsurface flow, as well as heat and mass transport. The coupling and capabilities of the modular DA system are described and demonstrated using an idealised model of a geologically heterogeneous alluvial river–aquifer system with drinking water production via riverbank filtration. To demonstrate its modularity and adaptability, both single and multivariate assimilations of hydraulic head and soil moisture observations are demonstrated in combination with individual and joint updating of multiple simulated states (i.e. hydraulic heads and water saturation) and model parameters (i.e. hydraulic conductivity). With the integrated model and this modular DA framework, we have essentially developed the hydrologically and DA-wise robust toolbox for developing the basic model for operational management of coupled surface water–groundwater resources.
Publisher
Copernicus GmbH
Reference103 articles.
1. Abbaszadeh, P., Moradkhani, H., and Yan, H.: Enhancing hydrologic data assimilation by evolutionary Particle Filter and Markov Chain Monte Carlo, Adv. Water Resour., 111, 192–204, https://doi.org/10.1016/j.advwatres.2017.11.011, 2018. 2. Ala-aho, P., Soulsby, C., Wang, H., and Tetzlaff, D.: Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation, J. Hydrol., 547, 664–677, https://doi.org/10.1016/j.jhydrol.2017.02.023, 2017. 3. Alvarado, E. J., Raymond, J., Therrien, R., Comeau, F.-A., and Carreau, M.: Geothermal Energy Potential of Active Northern Underground Mines: Designing a System Relying on Mine Water, Mine Water Environ., 41, 1055–1081, https://doi.org/10.1007/s10230-022-00900-8, 2022. 4. Anderson, M. P., Woessner, W. W., and Hunt, R. J.: Applied groundwater modeling: simulation of flow and advective transport, Academic press, ISBN 978-0-12-058103-0, 2015. 5. Aquanty, I.: HydroGeoSphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport, Theory manual, Aquanty Inc.: Waterloo, ON, Canada, 2020.
|
|