Stochastic theory of charge dynamics and recombination in defect clusters in bulk silicon

Author:

Abramavicius Darius

Abstract

Various types of defect clusters are generated in bulk Si-based high-energy particle detectors. They become either recombination centres or charge trapping centres. Populated trapping centres create internal fields which may affect the dynamics and recombination of remaining free charges. In the semiclassical regime, the charge dynamics can be described by the Boltzmann equation. In this paper, the stochastic description is presented as an alternative to a direct solution of the Boltzmann equation approach. It is demonstrated that the hole dynamics can be described in the overdamped regime in both light-hole and heavy-hole cases. Electrons have to be described by including ballistic components. The theory allows an efficient simulation of the electron and hole dynamics in the vicinity of a defect cluster and demonstrates that local trapping centres are the major components enabling fast charge recombinations. The dipolar type internal fields of permanently trapped charges only weakly influence the charge recombination kinetics.

Publisher

Lithuanian Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3