Mammography-based radiomics for predicting the risk of breast cancer recurrence: a multicenter study

Author:

Mao Ning12,Yin Ping3,Zhang Haicheng2,Zhang Kun4,Song Xicheng2,Xing Dong1,Chu Tongpeng12

Affiliation:

1. Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China

2. Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China

3. Department of Radiology, Peking University People's Hospital, Beijing, China

4. Department of Breast Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China

Abstract

Objective: This study aimed to establish a mammography-based radiomics model for predicting the risk of estrogen receptor (ER)-positive, lymph node (LN)-negative invasive breast cancer recurrence based on Oncotype DX and validated it by using multicenter data. Methods: A total of 304 potentially eligible patients with pre-operative mammography images and available Oncotype DX score were retrospectively enrolled from two hospitals. The patients were grouped as training set (168 patients), internal test set (72 patients), and external test set (64 patients). Radiomics features were extracted from the mammography images of each patient. Spearman correlation analysis, analysis of variance, and least absolute shrinkage and selection operator regression were performed to reduce the redundant features in the training set, and the least absolute shrinkage and selection operator algorithm was used to construct the radiomics signature based on selected features. Multivariate logistic regression was utilized to construct classification models that included radiomics signature and clinical risk factors to predict low vs intermediate and high recurrence risk of ER-positive, LN-negative invasive breast cancer in the training set. The models were evaluated with the receiver operating characteristic curve in the training set. The internal and external test sets were used to confirm the discriminatory power of the models. The clinical usefulness was evaluated by using decision curve analysis. Results: The radiomics signature consisting of three radiomics features achieved favorable prediction performance. The multivariate logistic regression model including radiomics signature and clinical risk factors (tumor grade and HER 2) showed good performance with areas under the curve of 0.92 (95% confidence interval [CI] 0.86 to 0.97), 0.88 (95% CI 0.75 to 1.00), and 0.84 (95% CI 0.69 to 0.99) in the training, internal and external test sets, respectively. The DCA indicated that when the threshold probability is ranges from 0.1 to 1.0, the radiomics model adds more net benefit than the “treat all” or “treat none” scheme in internal and external test sets. Conclusion: As a non-invasive pre-operative prediction tool, the mammography-based radiomics model incorporating radiomics and clinical factors show favorable predictive performance for predicting the risk of ER-positive, LN-negative invasive breast cancer recurrence based on Oncotype DX. Advances in knowledge: The mammography-based radiomics model incorporating radiomics and clinical factors shows favorable predictive performance for predicting the risk of ER-positive, LN-negative invasive breast cancer recurrence.

Publisher

British Institute of Radiology

Subject

Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3