Three-dimensional versus four-dimensional dose calculation for breast intensity-modulated radiation therapy

Author:

Chung Joo-Hyun1,Chun Minsoo123,Kim Jung-in123,Park Jong Min1234,Shin Kyung Hwan123ORCID

Affiliation:

1. Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea

2. Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea

3. Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea

4. Robotics Research Laboratory for Extreme Environments, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea

Abstract

Objective: To analyze the effect of intra- and interfractional motion during breast intensity modulated radiation therapy (IMRT) by calculating dose distribution based on four-dimensional computed tomography (4DCT). Methods: 20 patients diagnosed with left breast cancer were enrolled. Three-dimensional CT (3DCT) along with 10 phases of 4DCT were collected for each patient, with target volumes independently delineated on both 3DCT and all phases of 4DCT. IMRT plans were generated based on 3DCT (43.2 Gy in 16 fractions). The plan parameters for each segment were split into phases based on time duration estimates for each respiratory phase, with phase-specific dose distributions calculated and summated (4D-calculated dose). The procedure is repeated for 16 fractionations by randomly allocating starting phase using random-number generation to simulate interfractional discrepancy caused by different starting phase. Comparisons of plan quality between the original and 4D-calculated doses were analyzed. Results: There was a significant distortion in 4D-calculated dose induced by respiratory motion in terms of conformity and homogeneity index compared to those of the original 3D plan. Mean doses of the heart and the ipsilateral lung were significantly higher in the 4D-calculated doses compared to those of the original 3D plan (0.34 Gy, p = 0.010 and 0.59 Gy, p < 0.001), respectively). The mean internal mammary lymph node (IMN) dose was significantly greater in the 4D-calculated plan, compared to the original 3D plan (1.42 Gy, p < 0.001). Conclusions: IMN doses should be optimized during the dose-calculation for the free-breathing left breast IMRT. Advances in knowledge: The interplay effect between respiratory motion and multileaf collimator modulation caused discrepancies in dose distribution, particularly in IMN.

Publisher

British Institute of Radiology

Subject

Radiology Nuclear Medicine and imaging,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3