Dosimetric effect of respiratory motion on planned dose in whole-breast volumetric modulated arc therapy using moderate and ultra-hypofractionation

Author:

Mankinen MikkoORCID,Virén Tuomas,Seppälä Jan,Hakkarainen Heikki,Koivumäki Tuomas

Abstract

Abstract Background and purpose The interplay effect of respiratory motion on the planned dose in free-breathing right-sided whole-breast irradiation (WBI) were studied by simulating hypofractionated VMAT treatment courses. Materials and methods Ten patients with phase-triggered 4D-CT images were included in the study. VMAT plans targeting the right breast were created retrospectively with moderately hypofractionated (40.05 Gy in 15 fractions of 2.67 Gy) and ultra-hypofractionated (26 Gy 5 fractions of 5.2 Gy) schemes. 3D-CRT plans were generated as a reference. All plans were divided into respiratory phase-specific plans and calculated in the corresponding phase images. Fraction-specific dose was formed by deforming and summing the phase-specific doses in the planning image for each fraction. The fraction-specific dose distributions were deformed and superimposed onto the planning image, forming the course-specific respiratory motion perturbed dose distribution. Planned and respiratory motion perturbed doses were compared and changes due to respiratory motion and choice of fractionation were evaluated. Results The respiratory motion perturbed PTV coverage (V95%) decreased by 1.7% and the homogeneity index increased by 0.02 for VMAT techniques, compared to the planned values. Highest decrease in CTV coverage was 0.7%. The largest dose differences were located in the areas of steep dose gradients parallel to respiratory motion. The largest difference in DVH parameters between fractionation schemes was 0.4% of the prescribed dose. Clinically relevant changes to the doses of organs at risk were not observed. One patient was excluded from the analysis due to large respiratory amplitude. Conclusion Respiratory motion of less than 5 mm in magnitude did not result in clinically significant changes in the planned free-breathing WBI dose. The 5 mm margins were sufficient to account for the respiratory motion in terms of CTV dose homogeneity and coverage for VMAT techniques. Steep dose gradients near the PTV edges might decrease the CTV coverage. No clinical significance was found due to the choice of fractionation.

Funder

Finnish Ministry of Social Affairs and Health

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3