Superior objective and subjective image quality of deep learning reconstruction for low-dose abdominal CT imaging in comparison with model-based iterative reconstruction and filtered back projection

Author:

Tamura Akio1ORCID,Mukaida Eisuke1,Ota Yoshitaka2,Kamata Masayoshi2,Abe Shun2,Yoshioka Kunihiro1

Affiliation:

1. Department of Radiology, Iwate Medical University School of Medicine, Iwate, Japan

2. Division of Central Radiology, Iwate Medical University Hospital, Iwate, Japan

Abstract

Objective: This study aimed to conduct objective and subjective comparisons of image quality among abdominal computed tomography (CT) reconstructions with deep learning reconstruction (DLR) algorithms, model-based iterative reconstruction (MBIR), and filtered back projection (FBP). Methods: Datasets from consecutive patients who underwent low-dose liver CT were retrospectively identified. Images were reconstructed using DLR, MBIR, and FBP. Mean image noise and contrast-to-noise ratio (CNR) were calculated, and noise, artifacts, sharpness, and overall image quality were subjectively assessed. Dunnett’s test was used for statistical comparisons. Results: Ninety patients (67 ± 12.7 years; 63 males; mean body mass index [BMI], 25.5 kg/m2) were included. The mean noise in the abdominal aorta and hepatic parenchyma of DLR was lower than that in FBP and MBIR (p < .001). For FBP and MBIR, image noise was significantly higher for obese patients than for those with normal BMI. The CNR for the abdominal aorta and hepatic parenchyma was higher for DLR than for FBP and MBIR (p < .001). MBIR images were subjectively rated as superior to FBP images in terms of noise, artifacts, sharpness, and overall quality (p < .001). DLR images were rated as superior to MBIR images in terms of noise (p < .001) and overall quality (p = .03). Conclusions: Based on objective and subjective comparisons, the image quality of DLR was found to be superior to that of MBIR and FBP on low-dose abdominal CT. DLR was the only method for which image noise was not higher for obese patients than for those with a normal BMI. Advances in knowledge: This study provides previously unavailable information on the properties of DLR systems and their clinical utility.

Publisher

British Institute of Radiology

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3