The Dose Optimization and Evaluation of Image Quality in the Adult Brain Protocols of Multi-Slice Computed Tomography: A Phantom Study

Author:

Prabsattroo Thawatchai1ORCID,Wachirasirikul Kanokpat1,Tansangworn Prasit1,Punikhom Puengjai1,Sudchai Waraporn2

Affiliation:

1. Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand

2. Nuclear Technology Service Center, Thailand Institute of Nuclear Technology, Nakhon Nayok 26120, Thailand

Abstract

Computed tomography examinations have caused high radiation doses for patients, especially for CT scans of the brain. This study aimed to optimize the radiation dose and image quality in adult brain CT protocols. Images were acquired using a Catphan 700 phantom. Radiation doses were recorded as CTDIvol and dose length product (DLP). CT brain protocols were optimized by varying parameters such as kVp, mAs, signal-to-noise ratio (SNR) level, and Clearview iterative reconstruction (IR). The image quality was also evaluated using AutoQA Plus v.1.8.7.0 software. CT number accuracy and linearity had a robust positive correlation with the linear attenuation coefficient (µ) and showed more inaccurate CT numbers when using 80 kVp. The modulation transfer function (MTF) showed a higher value in 100 and 120 kVp protocols (p < 0.001), while high-contrast spatial resolution showed a higher value in 80 and 100 kVp protocols (p < 0.001). Low-contrast detectability and the contrast-to-noise ratio (CNR) tended to increase when using high mAs, SNR, and the Clearview IR protocol. Noise decreased when using a high radiation dose and a high percentage of Clearview IR. CTDIvol and DLP were increased with increasing kVp, mAs, and SNR levels, while the increasing percentage of Clearview did not affect the radiation dose. Optimized protocols, including radiation dose and image quality, should be evaluated to preserve diagnostic capability. The recommended parameter settings include kVp set between 100 and 120 kVp, mAs ranging from 200 to 300 mAs, SNR level within the range of 0.7–1.0, and an iterative reconstruction value of 30% Clearview to 60% or higher.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3