Harnessing radiation to improve immunotherapy: better with particles?

Author:

Durante Marco12ORCID,Formenti Silvia3

Affiliation:

1. GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany

2. Technische Universität Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany

3. Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA

Abstract

The combination of radiotherapy and immunotherapy is one of the most promising strategies for cancer treatment. Recent clinical results support the pre-clinical experiments pointing to a benefit for the combined treatment in metastatic patients. Charged particle therapy (using protons or heavier ions) is considered one of the most advanced radiotherapy techniques, but its cost remains higher than conventional X-ray therapy. The most important question to be addressed to justify a more widespread use of particle therapy is whether they can be more effective than X-rays in combination with immunotherapy. Protons and heavy ions have physical advantages compared to X-rays that lead to a reduced damage to the immune cells, that are required for an effective immune response. Moreover, densely ionizing radiation may have biological advantages, due to different cell death pathways and release of cytokine mediators of inflammation. We will discuss results in esophageal cancer patients showing that charged particles can reduce the damage to blood lymphocytes compared to X-rays, and preliminary in vitro studies pointing to an increased release of immune-stimulating cytokines after heavy ion exposure. Pre-clinical and clinical studies are ongoing to test these hypotheses.

Publisher

British Institute of Radiology

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3