Revealing the effect of X-ray or proton brain irradiation on systemic inflammation and leukocyte subpopulation interplay in rodents

Author:

Pham Thao-Nguyen12,Coupey Julie1,Rousseau Marc2,Thariat Juliette23,Valable Samuel1ORCID

Affiliation:

1. Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON , 14000 Caen, Normandy , France

2. Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France—Normandie Université , 14000 Caen, Normandy , France

3. Department of Radiation Oncology, Centre François Baclesse , 14000 Caen, Normandy , France

Abstract

Abstract The absolute lymphocyte count (ALC), lymphocyte-to-monocyte ratio (LMR), and neutrophil-to-lymphocyte ratio (NLR) offer convenient means to assess systemic inflammation post-cancer treatment, which influences treatment outcomes. Understanding these biomarker variations and leukocyte subpopulation interplay is crucial for optimizing radiotherapy. Herein, leukocyte subpopulations (T-CD4+, T-CD8+, B cells, NK cells, neutrophils, monocytes) during and after brain irradiation (using X-rays or protons) in tumor-free mice were used to compute ALC, LMR, and NLR, on which radiation parameter influence was assessed by principal component analysis (PCA). NLR kinetics was further examined using modeling. Leukocyte subpopulation interplays and their response to radiation parameters were examined using PCA and correlation analysis. Under X-rays, ALC and LMR decreased, with ALC recovered to baseline after irradiation, but not LMR. Both X-rays and protons increased the NLR during irradiation, recovering in protons but not X-rays. Both irradiation volume and dose rate had a pronounced effect on the NLR. Leukocyte subpopulation interplay was observed under X-rays and protons, normalizing in the proton group by day 28. Lymphopenia was observed in all lymphocyte subpopulations under X-ray irradiation but not protons. The recovery patterns varied among the subpopulations. Neutrophil counts increased during irradiation, with the recovery of protons, but not X-rays, by day 28. Interplays between NK cells and myeloid subpopulations were evident under X-rays but not protons. Importantly, no interplay was detected between myeloid cells and T/B cells, indicating that LMR and NLR variations were primarily due to independent responses to brain irradiation. A tumor-free experimental mouse model was used to study the effects of brain radiotherapy on systemic immunity. When administering fractionated irradiation with a total dose of 20 Gy using a vertical beam to either the whole brain or hemi-brain, proton irradiation had fewer adverse impacts on the immune system compared to X-rays in tumor-free rodents.

Funder

CNRS

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3