Bio-accumulation of Arsenic (III) Using Nelumbo Nucifera Gaertn

Author:

Painuly Archana Saily1,Gupta Ruchi1,Vats Sidharth1

Affiliation:

1. Shri Ramswaroop Memorial University, Faculty of Chemical Sciences, Uttar Pradesh, India

Abstract

Background. High arsenic levels in potable water are a threat to public health in India. About 85% of the water in India's rural areas comes from groundwater and roughly 27 million people are at risk of arsenic (As) contamination. Objectives. The present study was performed to examine the feasibility of providing an effective and affordable means for arsenic abatement in socio-economically poor and rural areas in India. This is the first report on the effectiveness of powder Nelumbo nucifera Gaertn (lotus) root biomass for As (III) eradication from aqueous solution. Methods . Batch experiments were conducted to determine the effects of various operating parameters, including pH, initial As (III) ion concentration, adsorbent dosages, and contact time for As (III) sorption onto lotus root. Discussion. The sorption efficiency of lotus root biomass for As (III) at pH 7 was found to be quantitative (96%) from 50 mg/L aqueous solution at a dose of 5gL−1. Capacity of the biosorbent for As (III) ion adsorption and the interaction between adsorbate with biosorbents were studied using Langmuir and Freundlich isotherm models. In the present study, the equilibrium parameter values ranged between 0 and 1, indicating that the adsorption of the As (III) ion onto lotus root biomass was favorable. Conclusions. Lotus root powder biomass was found to be an effective adsorbent for As (III) and could be used as an efficient, cost-effective and environmentally safe biosorbent for the sorption of arsenic from aqueous solutions. Competing Interests. The authors declare no competing financial interests.

Publisher

Blacksmith Institute

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution

Reference36 articles.

1. Arsenic Pollution

2. Arsenic contamination of drinking water in Ireland: A spatial analysis of occurrence and potential risk;McGrory;Sci Total Environ [Internet],2017

3. Introduction to the arsenic contamination problem;Pal;Groundwater arsenic remediation,2015

4. Arsenic toxicity exceeds WHO limit by nearly 8 times in Gomti, reveals study;Sinha;Times of India [Internet],2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3