Ensemble Feed-Forward Neural Network and Support Vector Machine for Prediction of Multiclass Malaria Infection

Author:

Abisoye Opeyemi Aderiike1,Jimoh Rasheed Gbenga2,Uthman Muhammed Uthman Mubashir Babatunde3

Affiliation:

1. Department of Computer Science, Federal University of Technology, Nigeria

2. Department of Computer Science, University of Ilorin, Nigeria

3. Department of Epidemiology and Community Health, University of Ilorin, Nigeria

Abstract

Globally, recent research are focused on developing appropriate and robust algorithms to provide a robust healthcare system that is versatile and accurate. Existing malaria models are plagued with low rate of convergence, overfitting, limited generalization due to restriction to binary cases prediction, and proneness to local minimum errors in finding reliable testing output due to complexity of features in the feature space, which is a black box in nature. This study adopted a stacking method of heterogeneous ensemble learning of Artificial Neural Network (ANN) and Support Vector Machine (SVM) algorithms to predict multiclass, symptomatic, and climatic malaria infection. ANN produced 48.33 percent accuracy, 60.61 percent sensitivity, and 45.58 percent specificity. SVM with Gaussian kernel function gave better performance results of 85.60 percent accuracy, 84.06 percent sensitivity, and 86.09 percent specificity. Consequently, to improve prediction performance, a stacking method was introduced to ensemble SVM with ANN. The proposed ensemble malaria model was tuned on different thresholds at a threshold value of 0.60, the ensemble model gave an optimum accuracy of 99.86 percent, sensitivity 100 percent, specificity 98.68 percent, and mean square error 0.14. The ensemble model experimental results indicated that stacked multiple classifiers produced better results than a single model. This research demonstrated the efficiency of heterogeneous stacking ensemble model on effects of climatic variations on multiclass malaria infection classification. Furthermore, the model reduced complexity, overfitting, low rate of convergence, and proneness to local minimum error problems of multiclass malaria infection in comparison to previous related models.

Publisher

UUM Press, Universiti Utara Malaysia

Subject

General Mathematics,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3