Performance Analysis and Discrimination Procedure of Two-Group Location Model with Some Continuous and High-Dimensional of Binary Variables

Author:

Hamid Hashibah,Okwonu Friday Zinzendoff,Ahad Nor Aishah,Abdul Rahim Hasliza

Abstract

This research’s primary goal was to evaluate the performance analysis of the recently constructed smoothed location models (SLMs) for discrimination purposes by combining two kinds of multiple correspondence analysis (MCA) to handle high dimensionality problems arising from the binary variables. A previous study of SLM, together with MCA as well as principal component analysis (PCA), displayed that the misclassification rate was still very high with respect to a large number of binary variables. Thus, two new SLMs are constructed in this paper to solve this particular problem. The first model results from the combination of SLM with Burt MCA (denoted as SLM+Burt), and the second one is with the joint correspondence analysis (denoted as SLM+JCA). The findings showed that both models performed well for all sample sizes (n) and all binary variables (b) under investigation, except n=60 and b=25 for the SLM+JCA model. Overall, the SLM+JCA model yields a greater performance in contrast to the SLM+Burt model. Moreover, the concept and procedures of the discrimination for the two-group classification conducted in this paper can be extended to multi-class classification as practitioners often deal with many groups and complexities of variables.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3