ADAPTIVE INITIAL CONTOUR AND PARTLY-NORMALIZATION ALGORITHM FOR IRIS SEGMENTATION OF BLURRY IRIS IMAGES

Author:

Jamaludin Shahrizan1,Mohamad Ayob Ahmad Faisal1,Mohd Norzeli Syamimi2,Mohamed Saiful Bahri2

Affiliation:

1. Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Malaysia

2. Faculty of Innovative Design and Technology, Universiti Sultan Zainal Abidin, Malaysia

Abstract

Iris segmentation is a process to isolate the accurate iris region from the eye image for iris recognition. Iris segmentation on non-ideal and noisy iris images is accurate with active contour. Nevertheless, it is currently unclear on how active contour responds to blurry iris images or motion blur, which presents a significant obstacle in iris segmentation. Investigation on blurry iris images, especially on the initial contour position, is rarely published and must be clarified. Moreover, evolution or convergence speed remains a significant challenge for active contour as it segments the precise iris boundary. Therefore, this study carried out experiments to achieve an efficient iris segmentation algorithm in terms of accuracy and fast execution, according to the aforementioned concerns. In addition, initial contour was explored to clarify its position. In order to accomplish these goals, the Wiener filter and morphological closing were used for preprocessing and reflection removal. Next, the adaptive initial contour (AIC), δ, and stopping function were integrated to create the adaptive Chan-Vese active contour (ACVAC) algorithm. Finally, the partly -normalization method for normalization and feature extraction was designed by selecting the most prominent iris features. The findings revealed that the algorithm outperformed the other active contour-based approaches in computational time and segmentation accuracy. It proved that in blurry iris images, the accurate initial contour position could be established. This algorithm is significant to solve inaccurate segmentation on blurry iris images.

Publisher

UUM Press, Universiti Utara Malaysia

Subject

General Mathematics,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3